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Abstract

This paper considers the problem of steering the aggregative behavior of a population of noncooperative price-taking agents
towards a desired behavior. Different from conventional pricing schemes where the price is fully available for design, we consider
the scenario where a system regulator broadcasts a price prediction signal that can be different from the actual price incurred
by the agents. The resulting reliability issues are taken into account by including trust dynamics in our model, implying that
the agents will not blindly follow the signal sent by the regulator, but rather follow it based on the history of its accuracy,
i.e, its deviation from the actual price. We present several nudge mechanisms to generate suitable price prediction signals
that are able to steer the aggregative behavior of the agents to stationary as well as temporal desired aggregative behaviors.
We provide analytical convergence guarantees for the resulting multi-components models. In particular, we prove that the
proposed nudge mechanisms earn and maintain full trust of the agents, and the aggregative behavior converges to the desired
one. The analytical results are complemented by a numerical case study of coordinated charging of plug-in electric vehicles.
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1 Introduction

Nudging is an approach in behavioral economics that is
proposed to improve people’s health and happiness by
providing “indirect suggestions” termed as nudges. A
nudge, by definition, is any characteristic of the choice
structure that predictably changes people’s behavior
without restricting any options or significantly affecting
economic incentives 1 . Therefore nudges are different
from mandates as they are easy and cheap to avoid [27].
Due to their aspects of preserving freedom of choice
and being non-intrusive, nudge policies have become
popular over the last few years. The most notable ex-
ample is the “Behavioural Insights Team” (known as
the “Nudge Unit”) that applies nudge theory in British
government, and, for instance, its most recent report
concerns energy consumption analysis and the impact
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(Mehran Shakarami), a.k.cherukuri@rug.nl (Ashish
Cherukuri), n.monshizadeh@rug.nl (Nima Monshizadeh).
1 Nudge was originally defined as the minimalist interven-
tion in a given situation such that a desired outcome is
achieved [28]. However, the Nobel laureate Richard Thaler
presented another definition in [27] which is more popular
and is used here.

of smart meters on customers’ energy consumption [24].
Another example is “informational nudging”, defined
as sending manipulated, and possibly misleading, infor-
mation about options to a decision maker for altering
its choices [10]. Informational nudging is studied re-
cently in the context of transportation systems [5] and
boundedly rational decision makers [6].

The problem of coordinating a population of noncooper-
ative price-taking agents and altering their aggregative
behavior appears in various applications such as charg-
ing of plug-in electric vehicles in a coordinated way [18],
residential energy consumption scheduling [20], and con-
gestion control in networks [2]. To address this problem,
a common approach in the literature is treating the price
as a design signal. If the system regulator has access
to all information of the agents, a linear price with re-
spect to the actions of the agents is sufficient to achieve
a desired behavior [1]. In case such information is not
available, which is often the case, dynamic pricing algo-
rithms are posed as a solution to overcome this lack of
knowledge; see e.g. [1,2,8,9,17]. The underlying assump-
tion in dynamic pricing is that price is fully controllable,
which in turn facilitates the regulator’s task in steering
the behavior of the agents. However, the actual price
could depend on various elements such as fixed and vari-
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able production costs and daily market conditions; see
e.g. [22] in the context of power systems. Here, instead,
we allow the signal designed by the regulator to be dif-
ferent from the actual price dictating the costs incurred
by the agents. Motivated by the advantages of nudging,
we propose a framework in which the regulator alters
the aggregative behavior of price-taking agents, without
directly designing the price and without fully knowing
the cost/utility functions of the agents. In our setup, the
regulator transmits a price prediction signal to all the
agents. The agents choose their actions taking this pre-
diction into account; however, they do not blindly fol-
low it since they are aware that the prediction signal
can differ from the actual price that they will incur. We
model such behavior by associating a trust variable to
each agent, which increases/decreases depending on the
history of the accuracy of the communicated price pre-
diction. In other words, here the agents cross-check the
validity of the communicated information. This novel
cross-checking step is a key feature of our work, and
distinguishes it from the existing informational nudging
schemes [5, 6, 10]. Moreover, the trust dynamics couple
the price prediction dynamics to the actual price, conse-
quently the proposed nudge mechanisms do not simplify
to conventional dynamic pricing schemes.

The presented framework is referred to as a nudge since it
does not directly affect economic incentives of the agents
and respects their freedom of choice. Putting it differ-
ently, we use price information to indirectly suggest de-
sired behaviors to the agents rather than enforcing man-
dates. For the idea of nudging through price information
in a different discipline, namely agricultural economics,
we refer the interested reader to [3].

Contributions: We present a novel framework which is
able to capture the multi-components model resulting
from nudge mechanisms in conjunction with agents’ ac-
tions and trust dynamics 2 . Within this framework, we
first consider stationary desired behaviors and design
two nudge mechanisms for the regulator, termed hard
and soft nudge. We show that under these mechanisms,
full trust of agents is gained in finite time and the ag-
gregative behavior of the agents converges asymptoti-
cally to a desired set point. Afterwards, we extend the
results to temporal desired behaviors and present an
adaptive nudge mechanism that can cope with the vari-
ations in the desired behavior. We analytically show

2 Preliminary results of this work are presented in the con-
ference article [25]. Different to the conference article, this
paper reports the proofs of Theorems 4.1 and 4.4, studies
convergence for stationary desired behaviors outside of the
admissible set (Corollary 4.2), presents a nudge mechanism
for temporal desired behaviors (Section 5) and establishes its
convergence (Theorem 5.2 and Appendix B), applies these
results to coordinated charging of plug-in electric vehicles
(Section 6), and studies existence of solutions for nonau-
tonomous projected dynamical systems (Appendix A).

that this mechanism obtains and maintains full trust of
agents, and consequently the aggregative behavior con-
verges to the time-dependent desired behavior. More-
over, a byproduct of our analysis gives sufficient condi-
tions for existence of Carathéodory solutions for nonau-
tonomous projected dynamical systems.

The structure of the paper is as follows. Preliminaries are
provided in Section 2. The proposed framework is intro-
duced in Section 3. Section 4 includes the hard and soft
nudge mechanisms for stationary desired behaviors and
their convergence analysis. The adaptive nudge mecha-
nism for temporal desired behaviors is presented in Sec-
tion 5. The case study is included in Section 6, and fi-
nally, conclusions are drawn in Section 7. Existence of
solutions for nonautonomous projected dynamical sys-
tems is established in Appendix A and stability analysis
for the adaptive nudge is provided in Appendix B.

Notation. We denote the set of natural, real, and non-
negative real numbers by N, R, and R≥0, respectively.
The standard Euclidean norm is denoted by ∥ · ∥. The
symbols 1n and 0n respectively denote the vectors of all
ones and zeros in Rn. We denote the Kronecker product
by ⊗. The vectorization of a matrix M ∈ Rm×n is de-
noted by vec(M). We denote the boundary, the interior,
and the closure of a set X ⊆ Rn with bd(X ), int(X ), and
cl(X ), respectively. Given the vectors x1, · · · , xN ∈ Rn,

we use the notation col(xi) =
[
x⊤1 , · · · , x⊤N

]⊤
. We write

M ≻ 0 to indicate thatM =M⊤ ∈ Rn×n is positive def-
inite. For a given vector x ∈ Rn and a positive semidefi-
nite matrixM , we denote the weighted Euclidean norm

of x by ∥x∥M :=
√
x⊤Mx. The Frobenius norm of a ma-

trix M ∈ Rm×n is denoted by ∥M∥F :=
√
Tr(M⊤M)

where Tr( · ) is the trace operator. A closed ball with
center x ∈ Rn and radius r > 0 is denoted by B̄(x, r) :=
{y ∈ Rn | ∥x − y∥ ≤ r}. A function F : X → Rm

is locally Lipschitz on an open set X ⊂ Rn if for any
point x ∈ X , there exist some positive scalar r and
Lipschitz constant L, both dependent on x, such that
∥F (y′)− F (y)∥ ≤ L∥y′ − y∥ for all y′, y ∈ B̄(x, r). The
function F is Lipschitz on X if there exists a positive
constant L satisfying ∥F (y′)−F (y)∥ ≤ L∥y′− y∥ for all
y′, y ∈ X .

2 Preliminaries

This section provides basic notions on convex analysis
and projected dynamical systems.

Convex analysis: Consider a nonempty, closed, convex
set X ⊆ Rn. The map projX : Rn → X denotes the
Euclidean projection on to the set X , i.e., projX (z) :=
argminy∈X ∥y − z∥. The normal cone to X at a given

point x ∈ X is the set NX (x) :=
{
y ∈ Rn | y⊤(s− x) ≤

0,∀s ∈ X
}
, and the tangent cone is defined as the set

TX (x) := cl (∪y∈X ∪λ>0 λ(y − x)). The projection of a
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vector z ∈ Rn on to TX (x) is denoted by ΠX (x, z) :=
projTX (x)(z). Given any point x ∈ X , it follows from

Moreau’s decomposition theorem [14, Thm. 3.2.5] that
any vector z ∈ Rn can be written as z = projNX (x)(z)+

projTX (x)(z). The reader may refer to [14, Fig. 5.3.1] for a
geometrical representation of normal and tangent cones.

Projected dynamical systems: Given a nonempty closed
set X ⊆ Rn and a continuous function h : Rn× [0,∞) →
Rn, the nonautonomous projected dynamical system as-
sociated to them is

ẋ = ΠX (x, h(x, t)) . (1)

The right-hand side of this system is discontinuous
on the boundary of the set X . Following [21, Def.
2.5], we specify a notion of solution to the above pro-
jected dynamical system. A map x : [0,∞) → X is
a Carathéodory solution of the projected dynamical
system (1) if it is absolutely continuous and satisfies
ẋ(t) = ΠX (x(t), h(x(t), t)) for almost all t ∈ [0,∞).

3 Problem formulation and the model

We consider a set of agents I := {1, . . . , N} that interact
repeatedly with a central regulator. The agents are non-
cooperative, that is, each agent i is associated with a
cost function Ji that it wishes to minimize by choosing
its action. In particular, the cost function of each agent
i ∈ I is given by Ji (zi, p), which determines the total
cost of action zi ∈ Rn given the price p ∈ Rn and n ∈ N.
For simplicity, we assume that Ji admits the following
linear-quadratic form

Ji (zi, p) :=
1

2
(zi − ci)

⊤
Qi (zi − ci) + z⊤i p, (2)

where Qi = Q⊤
i ∈ Rn×n, Qi ≻ 0, and ci ∈ Rn. The

cost function Ji consists of two terms, the local penalty

term 1
2 (zi − ci)

⊤
Qi (zi − ci) and the cost of action zi

⊤p.
Note that ci is the optimal action of the agent when the
price is zero. The structure (2) appears in applications
where zi indicates the demand of a product that comes
at price p, for instance coordinated charging of plug-in
electric vehicles [18] and scheduling of residential energy
consumption [20].

Before providing further details, we give an overview of
our model. The regulator provides a prediction of the
price for all the agents. This prediction is potentially dif-
ferent from the actual price that determines the costs
incurred by the agents. The agents use the price predic-
tion to choose their actions with the aim of minimizing
the cost they incur under the actual price. The actual
price is determined and revealed only after the actions
are chosen.

The regulator, on the other hand, aims at steering the
aggregative behavior of the agents to a desired point us-
ing the price prediction signal. We assume that the reg-
ulator does not know the cost functions of the agents. A
common approach of steering aggregate behavior, often
referred to as dynamic pricing, is to use the price as a
control signal to regulate the system of agents [1,8,17]. In
contrast, here the actual price signal is not available for
design and the regulator needs to rely on the price pre-
diction signal to manipulate the agents’ behavior. Our
motivation stems from the fact that, in reality, the ac-
tual price may not be prescribed a priori as a dynamic
function of demands/actions.

The discrepancy between the price prediction and the
actual price readily brings the issue of trust or reliability.
Namely, the central regulator needs to earn and main-
tain the trust of the agents in order to influence their
decisions. We take this into account by considering that
the agents associate a level of trust/reliability to the reg-
ulator’s prediction based on the history of its accuracy.

In the sequel, we aim to carefully model the above de-
scribed features and design update schemes, termed
nudge mechanisms, that enable the regulator to steer
the aggregative behavior of the agents to a desired ref-
erence. We first look at the problem from the agents’
side and put forward a model where agents use available
information to decide on their actions. The regulator’s
side will be dealt with in Section 4, where nudge mech-
anisms are proposed.

3.1 Agents’ actions and trust dynamics

In choosing their actions at time t ∈ [0,∞), the agents
have access to a price prediction p̂(t) ∈ Rn sent out by
the regulator. Note that this value is common for all
agents. In addition, we assume that each agent i ∈ I
has a local perception of the price, denoted by λ̂i ∈ Rn,
that the agent would have used in the absence of the
prediction p̂(t).

As mentioned before, different from conventional dy-
namic pricing, the distinction between the actual price
and its prediction brings the issue of reliability, and we
incorporate this in our model by associating a level of
trust/reliability to the regulator’s prediction based on
the history of its accuracy. In particular, let γi(t) ∈ [0, 1]
be the trust variable of agent i associated with the price
prediction p̂(t). Note that γi(t) = 1 and γi(t) = 0 stand
for full and no trust, respectively. Given the amount of
trust, predicted price, and the local perception, agent i

3



adopts a trust-adapted price perception 3

λi(t) := γi(t)p̂(t) + (1− γi(t))λ̂i . (3)

If γi(t) is close to 1, the agent disregards its own percep-
tion of the price and follows the price prediction commu-
nicated by the regulator. Conversely, as γi(t) approaches
0, the agent loses trust in the price prediction p̂(t) and

follows its own price perception λ̂i when deciding on its
optimal action. The agent i uses this trust-adapted price
perception to determine its optimal action as follows:

xi(t) := argmin
z∈Rn

Ji (z, λi(t)) .

By using (2) and (3), the explicit expression of the opti-
mal action of agents is given by

xi(t) = ci −Q−1
i

(
γi(t)p̂(t) + (1− γi(t)) λ̂i

)
. (4)

The actual price t 7→ p(t) is available to the agents once
they have taken their actions. If the discrepancy between
the predicted and actual price is large, then agents lose
their trust in the predictions. We capture the changes of
trust based on these positive or negative experiences by
providing a trust update rule. In particular, we consider
the following trust dynamics:

γ̇i(t) = ηiψi(∥p(t)− p̂(t)∥), (5)

where ηi > 0 and ψi : R≥0 → [−1, 1] determines whether
the agent loses or gains trust in the price prediction.
We assume that ψi( · ) satisfies the following assumption,
and an example of this function is depicted in Fig. 1.

Assumption 3.1. The function ψi : R≥0 → [−1, 1] is
locally Lipschitz and strictly decreasing. In addition, we
have ψi(0) > 0 and ψi(δi) = 0 for some δi > 0. •

The scalar δi quantifies the tolerance of agent i towards
the prediction error. That is, if the error between the
actual and the predicted price ∥p(t) − p̂(t)∥ is greater
than δi, agent i begins losing trust in the prediction with
the rate ηi. Conversely, trust increases as long as the
error is within the tolerance δi. The rationale behind
this dynamics is that, excluding the extreme cases of
unconditional trust or distrust, trust can be gained or
lost after several positive or negative experiences [15].

3 The trust-adapted protocol (3) can be replaced by a
more general form λi(t) = ωi(p̂(t), γi(t), t) where (p̂, γi) 7→
ωi(p̂, γi, t) is Lipschitz, t 7→ ωi(p̂, γi, t) is uniformly continu-
ous, and ωi(p̂, 1, t) = p̂ for all t ∈ [0,∞). The explicit depen-
dence of ωi on t also allows to accommodate a time-varying

local price perception t 7→ λ̂i(t). However, we opt for the
form (3) in order to provide a more explicit analysis and to
highlight better the underlying intuition.

Fig. 1. An example of the function ψi satisfying Assumption
3.1.

Note that trust variables are defined in the interval be-
tween 0 and 1. To respect this, we slightly revise (5) by
adding projection operators to it, namely:

γ̇i(t) = Π[0,1] (γi(t), ηiψi(∥p(t)− p̂(t)∥)) . (6)

We note that the essence of the trust update rule remains
the same as (5). The projection operators become active
only if the bounds γi = 0 or γi = 1 are hit. In particular,
if γi(t1) = 1 at some time t = t1 and ψi(∥p(t1)− p̂(t1)∥)
is positive (thus suggesting an increase in γi), the pro-
jection becomes active, and sets γ̇i(t1) to 0, thus pro-
hibiting the trust variable to exceed its maximum value
1. An analogous scenario occurs for the case γi(t1) = 0.

For simplicity of presentation, we rewrite the model of
agent i, consisted from (4) and (6), as follows:

Σi :

{
γ̇i(t) = Π[0,1](γi(t), ηiψi(∥p(t)− p̂(t)∥)),
xi(t) = πi(p̂(t), γi(t)),

(7a)

(7b)

where

πi(p̂, γi) := ci −Q−1
i

(
γi p̂+ (1− γi) λ̂i

)
. (8)

Note that the actual price p and the price prediction p̂
are the inputs of the model, and the action vector xi is
the output. Having introduced the model of the agents,
we next discuss the desired aggregative behavior.

3.2 Desired aggregative behavior

The goal of the system regulator is to coordinate the
agents such that they cumulatively behave in a desired
fashion. Here, we are interested in regulating

∑
i∈I xi(t),

which we refer to as the aggregative behavior. Such quan-
tity often reflects total production or total demand de-
pending on the application at hand. More precisely, the
regulator aims to achieve

lim
t→∞

∑
i∈I

xi(t) = x∗, (9)
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for some desired setpoint x∗ ∈ Rn. 4 To this end, we
propose suitable nudge mechanisms that can be imple-
mented by the regulator. A mechanism is a nudge if it
influences the behavior of a group of individuals through
providing indirect suggestions. We use this concept and
propose mechanisms in which the regulator manipulates
the price prediction p̂(t) to achieve its goal, namely (9).

Recall that the actual price is considered here as an ex-
ogenous signal. In particular, we assume that it admits

p(t) = p0 +∆p(t) , ∀ t ∈ [0,∞) ,

where p0 is a constant base price, known to the regulator,
and ∥∆p(t)∥ ≪ ∥p0∥ accounts for price fluctuations. We
assume that the following condition holds throughout
the paper:

Assumption 3.2. The actual price function p :
[0,∞) → Rn is continuous, and its fluctuations satisfies
∥∆p(t)∥ < mini∈I δi for all t ∈ [0,∞). •

Remark 3.3. Note that in the absence of the objective
(9), the best the regulator can do is to provide the agents
with the true value of p0. In that case, the price predic-
tion error amounts to ∥∆p(t)∥. Therefore, the inequality
constraint in Assumption 3.2 simply means that the pre-
diction error in such a manipulation-free case is within
the tolerances of all agents. In other words, the price
fluctuations, per se, should not lead to a loss in trust. •

The fact that the agents do not blindly follow the price
prediction p̂(t) implies that not any arbitrary aggrega-
tive behavior x∗ is achievable. Next, we identify a set of
aggregative behaviors to which the agents can be driven
by applying our nudge mechanisms.

Let Assumption 3.2 hold, and choose δ̄ ∈ R such that

0 < δ̄ < min
i∈I

δi − ∥∆p(t)∥, ∀ t ∈ [0,∞). (10)

We leverage the idea that if Assumption 3.1 holds and
p̂(t) belongs to the closed ball

B := B̄(p0, δ̄) =
{
p̂ ∈ Rn | ∥p̂− p0∥ ≤ δ̄

}
, (11)

then ψi( · ) takes positive values and γi(t) increases for
all i ∈ I following (7a). As a result, the regulator can
gain agents’ trust in the price prediction by constraining
p̂(t) to the ball B. Bearing this and the action of agents
in (7b) in mind, we define the set of admissible x∗ as:

X ∗ :=
{
x ∈ Rn | x =

∑
i∈I

(
ci −Q−1

i p̂
)
, p̂ ∈ B

}
. (12)

4 In Section 5, we allow x∗ to be a time-varying reference
signal.

From (11), the set X ∗ can be explicitly written as

X ∗ =
{
x ∈ Rn | (x− x0)

⊤(
∑
i∈I

Q−1
i )−2(x− x0) ≤ δ̄ 2

}
,

(13)
where x0 :=

∑
i∈I
(
ci −Q−1

i p0
)
. Thus, the regulator

can alter the aggregative behavior inside a compact set
around x0. Putting it differently,X ∗ characterizes the set
of aggregative behaviors that are potentially achievable
while monotonically increasing the trust variables. Note
from (10) and (13) that the bigger the agents’ tolerances
δi’s are, the larger can be δ̄ and thus, the set X ∗.

For any x∗ ∈ X ∗, there exists a unique p∗ ∈ B such that

x∗ =
∑
i∈I

(
ci −Q−1

i p∗
)
, (14)

or equivalently

p∗ =
(∑
i∈I

Q−1
i

)−1(− x∗ +
∑
i∈I

ci
)
. (15)

The vector p∗ is an important quantity. If the agents fully
trust the price prediction and the regulator communi-
cates p∗ as the prediction, then the aggregative behavior
of the agents will be x∗. However, the regulator cannot
directly compute p∗ since it does not know the exact pa-
rameters defining individual cost functions. Moreover,
trust can only be gained over time. To address these
issues, suitable nudge mechanisms are designed in the
next section. Each of those mechanisms can be intercon-
nected with the agents’ dynamics, as demonstrated in
Fig. 2, in order to drive the price prediction p̂(t) to p∗,
and consequently x(t) to x∗. The key parameter used in
the proposed mechanisms is δ̄ satisfying (10). The pre-
cise values of the tolerances of the agents δi’s are un-
known to the regulator, and the price fluctuations ∆p(t)
are not available a priori. Thus the regulator typically
needs to rely on lower estimate of mini∈I δi−∥∆p(·)∥ to
select δ̄. The less the regulator knows about the right-
hand side of (10), the more conservative the value of δ̄
has to be chosen, which in turn results in a smaller ball
B as well as a smaller set of admissible desired behaviors
X ∗. Learning a feasible δ̄ from experiments is an inter-
esting research question for future research.

4 Nudge mechanisms for stationary desired be-
haviors

In this section, we design two nudge mechanisms, re-
ferred to as hard and soft, that provide suitable price
prediction signals.
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Σ1

Σ2

. . .

ΣN

1⊤
N ⊗ In

Nudge mechanism

col(xi)

∑
i∈I xip̂

p

Fig. 2. Block diagram representation of agents intercon-
nected with a nudge mechanism.

4.1 Hard nudge mechanism

The first nudge mechanism that we propose is the fol-
lowing projected-integral control law

˙̂p(t) = ΠB

(
p̂(t),

∑
i∈I

xi(t)− x∗
)
, (16)

where B is defined as (11) and x∗ is the desired aggrega-
tive behavior. We note that from [21, Lem. 2.1], the pro-
jection operator on the right-hand side can be explic-
itly expressed using the definition of B. In particular, let
e(t) :=

∑
i∈I xi(t)− x∗, then we obtain:

ΠB (p̂(t), e(t)) =

{
e(t), if p̂(t) ∈ int(B),
e(t)− α(t)(p̂(t)−p0)

∥p̂(t)−p0∥2 , if p̂(t) ∈ bd(B),

where α(t) := max{0, e(t)⊤(p̂(t) − p0)}. The intuition
behind the nudge mechanism in (16) is as follows: this
mechanism provides a suitable integral action that up-
dates the price prediction such that the error between
the desired behavior and the current aggregative behav-
ior diminishes. To gain and maintain the trust of the
agents, the price prediction is constrained to the ball B
for all time, and thus we refer to (16) as hard nudge.

The overall system, as shown in Fig. 2, is obtained by
interconnecting (16) with agents (7), and the theorem
below addresses its convergence.

Theorem 4.1. Consider the closed-loop system formed
by agents’ model (7) and the hard nudge mecha-
nism (16) with x∗ ∈ X ∗. Then, for any initial con-
dition (p̂(0), col(γi(0))) ∈ B × [0, 1]N , there exists a
Carathéodory solution t 7→ (p̂(t), col(γi(t))) of the
closed-loop system over the domain [0,∞). Moreover,
any solution (p̂(t), col(γi(t))) converges to (p∗,1N ) with
p∗ given by (15). Consequently,

∑
i∈I xi(t) converges to

x∗ as desired.

Proof. The proof is divided into two parts. Since the
vector field of the overall system is discontinuous, we
show existence of Carathéodory solutions of the system
in the first part. The second part is devoted to conver-
gence analysis.

Existence of solutions: Let ξ := (p̂, col(γi)) and Ω := B×
[0, 1]N . Then, by substituting the expression of xi from
(7b) into (16), we obtain the nonautonomous projected
dynamical system that represents the closed-loop system
(7) and (16) as ξ̇ = ΠΩ(ξ, h(ξ, t)), where

h(ξ, t) :=

 ∑
i∈I

πi(p̂, γi)− x∗

col (ηiψi(∥p(t)− p̂∥))

 .
Note that themap (p̂, t) 7→ ψi(∥p(t)−p̂∥) is measurable 5

in t and locally Lipschitz in p̂. The former follows from
Assumptions 3.1 and 3.2 and the fact that every contin-
uous function is measurable [23, Prop. 3.3]. The latter is
a consequence of Assumption 3.1 and the fact that the
norm operator is Lipschitz. Consequently, the function
(ξ, t) 7→ h(ξ, t) is locally Lipschitz in ξ and measurable
in t, and using the compactness of the set Ω, existence
of solutions for any initial condition (p̂(0), col(γi(0))) ∈
B × [0, 1]N is guaranteed by Lemma A.1.

Convergence analysis: Our proof proceeds by showing
that for any solution of the system, there exists a finite
time by which full trust of agents is achieved and main-
tained. Subsequently, with full trust, we show that p̂(t)
converges to p∗.

Note from (16) that p̂(t) ∈ B for all t ≥ 0. Using this
fact along with Assumption 3.1, we obtain ψi(∥p(t) −
p̂(t)∥) > 0 for all i ∈ I and t ≥ 0. Consequently, along
any solution, the trust variable of agent i at any time t
is given by

γi(t) = min
{
1, γi(0)+ηi

∫ t

0

ψi(∥p(τ)−p̂(τ)∥) dτ
}
. (17)

Bearing in mind that p̂(t) belongs to the ball B given
by (11), we have ∥p(t) − p̂(t)∥ ≤ ρ < mini∈I δi for
some ρ > 0. Hence, by Assumption 3.1, we obtain that
ψi(∥p(t) − p̂(t)∥) ≥ ψi(ρ) > 0 for all time. Let T i :=
(1 − γi(0))/(ηiψi(ρ)). Then, from (17), we deduce that
γi(t) = 1 for all t ≥ T i. Setting T := maxi∈I T

i, we con-
clude that col(γi(t)) = 1N for all t ∈ [T,∞). As a conse-
quence, in the time interval [T,∞), the price prediction
dynamics (16) reduces to

˙̂p = ΠB(p̂, f (p̂)), (18)

where
f (p̂) :=

∑
i∈I

ci −
∑
i∈I

Q−1
i p̂− x∗. (19)

We next analyze the asymptotic properties of (18) and

5 A function f : E → R is measurable if its domain E is
measurable, and the set {x ∈ E | f(x) > α} is measurable for
all α ∈ R. For an in depth overview of measurable functions
see [23, Ch. 3].
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show that its solutions converge asymptotically to p∗.
Consider the Lyapunov candidate V (p̂) := 1

2∥p̂ − p∗∥2.
Since solutions of (18) are absolutely continuous and V
is continuously differentiable, the time-derivative of the
evolution of V along any solution of (18) is equal to the
inner product of the gradient of V and the right-hand
side of (18). This inner product is computed as

∇V (p̂)⊤ΠB (p̂, f(p̂)) =(p̂− p∗)⊤f(p̂)

− (p̂− p∗)⊤ projNB(p̂) (f (p̂)) ,

where we used Moreau’s decomposition theorem
(cf. Section 2) to obtain the above equality and
NB(p̂) is the normal cone of B at p̂. Note that
−(p̂− p∗)⊤ projNB(p̂) (f (p̂)) ≤ 0 since p̂, p∗ ∈ B, and we

find that ∇V (p̂)⊤ΠB (p̂, f(p̂)) ≤ (p̂− p∗)⊤f(p̂) . We use
(19) and the expression of x∗ in (14) to obtain

∇V (p̂)⊤ΠB (p̂, f(p̂)) ≤ −∥p̂− p∗∥2∑
i∈I

Q−1
i

.

This implies that V decreases monotonically along every
solution of (18). Consequently, p̂ converges to p∗, and
the aggregate behavior

∑
i∈I xi converges to x

∗. ■

As shown in Theorem 4.1, the hard nudge mechanism
(16) successfully steers the agents to the desired aggrega-
tive behavior, for any x∗ ∈ X ∗. An implicit requirement
is that the regulator has partial knowledge on expected
desired aggregative behaviors, i.e., a subset of X ∗, to
pick a feasible x∗. In case this information is not avail-
able and x∗ /∈ X ∗, convergence of the aggregative behav-
ior is still guaranteed, but to a different point, namely
to x′ ∈ X ∗ that is the closest point to x∗ in a suitable
norm. This is formally stated in the following corollary.

Corollary 4.2. Consider the closed-loop system formed
by agents’ model (7) and the hard nudge mecha-
nism (16) with x∗ /∈ X ∗. Then, for any initial con-
dition (p̂(0), col(γi(0))) ∈ B × [0, 1]N , there exists a
Carathéodory solution t 7→ (p̂(t), col(γi(t))) of the
closed-loop system over the domain [0,∞). Moreover,∑

i∈I xi(t) converges to x
′ ̸= x∗ given by

x′ = argmin
y∈X∗

1

2
∥x∗ − y∥2(∑

i∈I
Q−1

i

)−1 .

Proof. Based on the proof of Theorem 4.1, the closed-
loop system admits a Carathéodory solution for all x∗ ∈
Rn, and thus existence of a solution t 7→ (p̂(t), col(γi(t)))
is guaranteed for all t ∈ [0,∞). Next, we consider x′ and
characterize its corresponding price prediction, namely
p′. We prove convergence of (p̂, col(γi)) to (p

′,1N ) after-
wards. Subsequently, convergence of

∑
i∈I xi to x

′ fol-
lows from the definition of p′.

The point x′ exists and is unique following Weierstrass’
Theorem [4, Prop. A.8] and [4, Prop. 2.1.1], respectively.
It also follows from [4, Prop. 2.1.2] that x′ ∈ X ∗ satisfies

(x′ − x∗)
⊤
(∑

i∈I
Q−1

i

)−1

(y − x′) ≥ 0, ∀ y ∈ X ∗.

Let p′ := (
∑

i∈I Q
−1
i )−1(−x′ +

∑
i∈I ci), then we have

p′ ∈ B. Moreover, for all y ∈ X ∗, we have(∑
i∈I

(ci−Q−1
i p′)−x∗

)⊤((∑
i∈I

Q−1
i

)−1
(y−
∑
i∈I

ci)+p
′
)
≥ 0.

Recalling the definition of X ∗ given by (12), we see that
for any y ∈ X ∗, there exists some s ∈ B such that
the relation y =

∑
i∈I
(
ci −Q−1

i s
)
holds. Therefore, the

above inequality can be rewritten as(∑
i∈I

(
ci−Q−1

i p′
)
−x∗

)⊤
(p′ − s) ≥ 0, ∀ s ∈ B. (20)

Note from (16) that p̂(t) ∈ B for all t ≥ 0. Following the
steps of the proof of Theorem 4.1, there exists some finite
time T ≥ 0 such that col(γi(t)) = 1N and the hard nudge
mechanism reduces to (18) for all t ≥ T . Considering
again the Lyapunov candidate V (p̂) := 1

2∥p̂ − p′∥2, its
derivation along (18) yields

∇V (p̂)⊤ΠB (p̂, f(p̂)) ≤ (p̂− p′)⊤f(p̂).

Now we add the left-hand side of (20) evaluated at s = p̂
to the right-hand side of the foregoing inequality to get

∇V (p̂)⊤ΠB (p̂, f(p̂))

≤ (p̂− p′)⊤
(
f(p̂)−

∑
i∈I

(
ci −Q−1

i p′
)
+ x∗

)
= −∥p̂− p′∥2∑

i∈I
Q−1

i

,

where the equality follows from the definition of f given
by (19). We conclude that V decreases monotonically
along every solution of (18) and p̂ converges to p′. ■

Remark 4.3. If Assumption 3.2 is not satisfied, one
may still be able to provide convergence guarantees un-
der suitable conditions. In particular, let S denote the
collection of agents that violate Assumption 3.2 for all
time, i.e, S := {j ∈ I | ∥∆p(t)∥ ≥ δj , ∀t ∈ [0,∞)}.
The remaining agents satisfy the assumption, namely
∥∆p(t)∥ < mini∈I\S δi for all time. We can then show

that under the hard nudge (16) with δ̄ ∈ R satisfying
the revised inequality

0 < δ̄ < min
{

min
i∈I\S

δi − ∥∆p(t)∥, ∥∆p(t)∥ −max
j∈S

δj
}
,
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for all time, the aggregative behavior of the agents in

S converges to x̄ :=
∑

j∈S(cj − Q−1
j λ̂j), whereas the

aggregative behavior of the agents in I \ S converges to

x′ = argmin
y∈Y

1

2
∥x∗ − x̄− y∥2

(
∑

i∈I\S
Q−1

i
)−1 ,

where Y := {x ∈ Rn | x =
∑

i∈I\S
(
ci −Q−1

i p̂
)
, p̂ ∈

B}. The set Y is similar to X ∗ in (12) but with the set
of agents restricted to I \S. In case x∗− x̄ ∈ Y, we have
x′ = x∗− x̄ which implies that the aggregative behavior
of all agents converges to x′ + x̄ = x∗. The details of the
analysis are omitted due to lack of space. •

4.2 Soft nudge mechanism

While using the nudge mechanism in (16) is effective for
driving the aggregative behavior of the agents to a de-
sired point, convergence is guaranteed only if the price
prediction is initialized in the ball B. We now present an
alternative nudge mechanism under which convergence
is guaranteed globally, i.e., for all (p̂(0), col(γi(0))) ∈
Rn × [0, 1]N . The proposed mechanism is given by

˙̂p(t) =
∑
i∈I

xi(t)− x∗ +
1

ε
(projB (p̂(t))− p̂(t)) , (21)

where B is defined in (11) and ε > 0 is a design param-
eter. We note that the explicit expression of the projec-
tion of p̂(t) on to the ball B is as follows 6 :

projB(p̂(t)) =

{
p̂(t), if p̂(t) ∈ B,
p0 +

δ̄(p̂(t)−p0)
∥p̂(t)−p0∥ , otherwise.

(22)

In themechanism (21), the term
∑

i∈I xi(t)−x∗ provides
a suitable integral action as before to steer the aggrega-
tive behavior towards x∗. However, different from (16),
this term is outside the projection operator, and solu-
tions of (21) need not belong to the ball B at all times. To
emphasize this feature, we denote the dynamics (21) as
soft nudge 7 . We note that outside the ball B, the term
projB (p̂(t))− p̂(t) is nonzero with the penalty gain ε−1,
thus attracting the price prediction p̂(t) to the ball and
preventing the loss of trust. The parameter ε is chosen
sufficiently small such that trust variables increase and
reach the value of 1 in finite time. Below we establish the
convergence properties of the soft nudge mechanism.

Theorem 4.4. Consider the closed-loop system formed
by agents’ model (7) and the soft nudge mechanism

6 This can be verified by [4, Prop. 2.1.3(b)].
7 For related work on replacing projected dynamical systems
with dynamics consisting of a penalty term, as in (21), see
the anti-windup approximation scheme studied in [11].

(21) with x∗ ∈ X ∗. Then, for any initial condition
(p̂(0), col(γi(0))) ∈ Rn × [0, 1]N , there exists a bounded
Carathéodory solution t 7→ (p̂(t), col(γi(t))) of the
closed-loop system over the domain [0,∞). Moreover,
there exists some ε∗ > 0 such that for all ε ∈ (0, ε∗], any
solution (p̂(t), col(γi(t))) converges to (p∗,1N ) with p∗

given by (15). Consequently,
∑

i∈I xi(t) converges to x
∗

as desired.

Proof. The proof is divided into three parts. In the
first part, we show that for any given (p̂(0), col(γi(0))) ∈
Rn × [0, 1]N , there exists a bounded Carathéodory solu-
tion of (7) and (21). The second part argues that there
exists some ε∗ > 0 such that for all ε ∈ (0, ε∗], the price
prediction converges exponentially fast to the neighbor-
hood of the ball B. We prove convergence of the solution
to the point (p∗,1N ) in the last part.

Existence of solutions: By using (7) and (21), we write
the dynamics of the overall closed-loop system as

˙̂p = h(p̂, col(γi)), (23a)

γ̇i = Π[0,1] (γi, ηiψi(∥p(t)− p̂∥)) , ∀i ∈ I, (23b)

where h(p̂, col(γi)) :=
∑

i∈I πi(p̂, γi)−x∗+
1
ε (projB(p̂)−

p̂). Noting the nonexpansive property of projB [4, Prop.
2.1.3(c)] and the definition of πi given by (8), the map
(p̂, col(γi)) 7→ h(p̂, col(γi)) is locally Lipschitz in its ar-
guments. Also, as discussed in the proof of Theorem 4.1,
we have that (p̂, t) 7→ ψi(∥p(t)− p̂∥) is locally Lipschitz
in p̂ and measurable in t. Consequently, existence of so-
lutions follows by showing that the hypotheses (i)-(iii)
of Lemma A.2 are satisfied.

We use the expression of πi given by (8) and rewrite the
dynamics (23a) as follows:

˙̂p = −
(1
ε
In +

∑
i∈I

γiQ
−1
i

)(
p̂− projB (p̂)

)
+ ν, (24)

where ν :=
∑

i∈I(ci + γiQ
−1
i (λ̂i − projB(p̂))) −∑

i∈I Q
−1
i λ̂i − x∗. Note that the term ν is bounded for

all p̂ ∈ Rn and γi ∈ [0, 1]. In particular, it follows from
projB (p̂) ∈ B that there exists a constant ν̄ > 0 such
that ∥ν∥ ≤ ν̄ for all (p̂, col(γi)) ∈ Rn × [0, 1]N .

Now consider the Lyapunov candidate V (p̂) := 1
2∥p̂ −

projB (p̂) ∥2. Since projB (p̂) is unique at any point p̂ ∈
Rn (cf. equation (22)), it follows from Danskin’s The-
orem [4, Prop. B.25(a)] that V (p̂) is differentiable and
∇V (p̂) = p̂− projB (p̂). Therefore V (p̂) satisfies Lemma
A.2(i)-(ii). We next establish existence of solutions by
analyzing the inner product of ∇V (p̂) and the right-
hand side of (24). Recalling that h(p̂, col(γi)) denotes
the right-hand side of (24) (cf. equation (23a)), this in-
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ner product is computed as

∇V (p̂)⊤h(p̂, col(γi)) = −∥p̂− projB (p̂) ∥2∑
i∈I

γiQ
−1
i

− 1

ε
∥p̂− projB (p̂) ∥2 + (p̂− projB (p̂))

⊤
ν.

The first term on the right-hand side of the above equa-
tion is nonpositive as γi ∈ [0, 1] and Qi ≻ 0 for all i ∈ I.
Using this fact and the bound on ν, we get

∇V (p̂)⊤h(p̂, col(γi)) ≤ − 1

2ε
∥p̂− projB (p̂) ∥2

− ∥p̂− projB (p̂) ∥
( 1

2ε
∥p̂− projB (p̂) ∥ − ν̄

)
. (25)

This implies that the inner product ∇V (·)⊤h(·) is neg-
ative for all ∥p̂∥ ≥ ∥p0∥+ δ̄+2εν̄ and γi ∈ [0, 1]. There-
fore, hypothesis (iii) of Lemma A.2 is satisfied, and the
closed-loop system has a bounded Carathéodory solu-
tion for all t ≥ 0.

Convergence of p̂ to the neighborhood of B: Let a constant
δ̃ > 0 satisfying

δ̄ < δ̃ < min
i∈I

δi − ∥∆p(t)∥ , ∀t ≥ 0 . (26)

Note that such δ̃ exists due to the condition (10). More-

over, we deduce from (22) that ∥p̂− projB (p̂) ∥ = δ̃ − δ̄

for all p̂ ∈ bd(B̄(p0, δ̃)). Let ε ∈ (0, ε∗] with

ε∗ :=
δ̃ − δ̄

2ν̄
. (27)

It then follows from (25) that the time-derivative of
the evolution of V along any solution of (23a) satis-

fies V̇ ≤ − 1
2ε∥p̂ − projB (p̂) ∥2 for all ∥p̂ − projB (p̂) ∥ ≥

δ̃ − δ̄. Noting the definition of V , we can then write
V̇ ≤ − 1

εV whenever ∥p̂ − projB (p̂) ∥ ≥ δ̃ − δ̄ or equiv-

alently p̂(t) ̸∈ B̄(p0, δ̃). As a result, for any solution
t 7→ (p̂(t), col(γi(t))), we have V (t) ≤ V (0) exp(−t/ε) as
long as p̂(t) ̸∈ B̄(p0, δ̃). Hence, if p̂ is initialized outside

the ball B̄(p0, δ̃), then it converges exponentially fast to
the ball in the time interval [0, T1] with

T1 = ε ln

(
2V (0)

(δ̃ − δ̄)2

)
, (28)

and we have p̂(t) ∈ B̄(p0, δ̃) for all t ≥ T1. Moreover,

note that if p̂ is initialized inside the ball B̄(p0, δ̃), then it

belongs to the ball for all t ≥ T1 = 0, since V̇ is negative
on bd(B̄(p0, δ̃)). The above given reasoning establishes

convergence of p̂(t) to the ball B̄(p0, δ̃) in finite time.

Convergence of (p̂, col(γi)) to (p∗,1N ): For the rest of
the proof we assume that ε ∈ (0, ε∗] where ε∗ is given
in (27). Consider any solution t 7→ (p̂(t), col(γi(t)) of the
closed-loop system. We divide the convergence analysis
into three time intervals [0, T1], [T1, T2], and [T2,∞).

Here, T1 is equal to zero if p̂(0) ∈ B̄(p0, δ̃), and T1 is
given by (28) otherwise. In other words, T1 is the time
when the trajectory t 7→ p̂(t) enters and stays in the set

B̄(p0, δ̃). Recall that γi(t) ∈ [0, 1] at all times. We will
next show that full trust of all the agents is achieved in
the time interval [T1, T2] for some finite time T2.

Noting that δ̃ satisfies (26) and p̂(t) ∈ B̄(p0, δ̃) in the
time interval [T1,∞), there exists some ρ̄ > 0 such that
∥p(t)− p̂(t)∥ ≤ ρ̄ < mini∈I δi in the same time interval.
By Assumption 3.1, we deduce that ψi(∥p(t)− p̂(t)∥) ≥
ψi(ρ̄) > 0 for all i ∈ I. This implies that, analogous to
the discussions of trust variables in the proof of The-
orem 4.1 and (17), we have γi(t) = 1 for all t ≥ T i,
where T i := T1 + (1 − γi(T1))/(ηiψi(ρ̄)). Setting T2 :=
maxi∈I T

i, we conclude that col(γi(t)) = 1N for all
t ∈ [T2,∞), i.e., full trust of the agents is obtained in
the time interval [T1, T2].

In the time interval [T2,∞), using γi(t) = 1 for all i ∈ I,
the dynamics of the price prediction (24) reduces to

˙̂p = −
∑
i∈I

Q−1
i (p̂− p∗) +

1

ε
(projB (p̂)− p̂) , (29)

where p̂(T2) ∈ B̄(p0, δ̃) and we used the expression of
x∗ in (14). Now, we consider the Lyapunov candidate
W (p̂) := 1

2∥p̂− p
∗∥2 and analyze its evolution along the

solution of (29). We have

Ẇ = −∥p̂− p∗∥2∑
i∈I

Q−1
i

+
1

ε
(p̂− p∗)

⊤
(projB(p̂)− p̂).

The second term on the right-hand side satisfies

(p̂− p∗)
⊤
(projB (p̂)− p̂)

= (p̂− projB (p̂))
⊤
(projB (p̂)− p̂)

+ (projB (p̂)− p∗)
⊤
(projB (p̂)− p̂) ≤ 0,

(30)

where we used p∗ ∈ B and [4, Prop. 2.1.3(b)] to

write the inequality. Consequently, we obtain Ẇ ≤
− (p̂− p∗)

⊤∑
i∈I Q

−1
i (p̂− p∗) . This implies that p̂ ex-

ponentially converges to p∗ in the time interval [T2,∞),
and the aggregate behavior

∑
i∈I xi converges to x

∗. ■

Remark 4.5. While Theorem 4.4 guarantees existence
of a sufficiently small ε∗ given by (27), computing its
value requires the knowledge of bounds on agent param-

eters ci, Qi, δi, and λ̂i. If such bounds are not available,
one can opt for the hard nudge mechanism (16) at the
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cost of restricting the initial condition p̂(0) to B. •

Remark 4.6. The results of the hard and soft nudge
mechanisms remain valid for more general classes of cost
functions than (2). In particular, let the cost functions be
of the form Ji(zi, p) := ci(zi) + z⊤i p, where ci : Rn → R
is C2 and strongly convex. It follows that the model of
the agents in (7) will be modified to

Σi :

{
γ̇i(t) = Π[0,1](γi(t), ηiψi(∥p(t)− p̂(t)∥)),

xi(t) = (∇ci)−1
(
−γi(t) p̂(t)− (1− γi(t)) λ̂i

)
.

It can be shown that for any desired behavior x∗ ∈ X ∗

with

X ∗ :=
{
x ∈ Rn | x =

∑
i∈I

(∇ci)−1(−p̂), p̂ ∈ B
}
,

both hard and soft nudges guarantee convergence of
the aggregative behavior to x∗. However, when the de-
sired behavior is time-varying, as considered in the next
section, devising a suitable nudge mechanism becomes
much more challenging. Therefore, to unify the presen-
tation throughout the paper, we have provided our re-
sults for the linear-quadratic cost function (2). •

5 A nudge mechanism for temporal desired be-
haviors

So far, we have treated the desired aggregative behav-
ior as a fixed point. However, this point may vary with
time in practice due to changes in the market condition,
the climate, and government policies. In the context of
power systems, for instance, climate change affects the
efficiency of power production as well as the energy con-
sumption [7]. The policies passed by the government
also affect the market substantially, see e.g. [29] regard-
ing renewable energy. These changes entail variations of
the desired aggregative behavior over time. Building on
(21), we design here a nudge mechanism that steers the
aggregative behavior of the agents to a desired time-
varying signal t 7→ x∗(t). The set of admissible reference
signals x∗( · ) is given by the assumption below.

Assumption 5.1. The signal t 7→ x∗(t) belongs to the
set X ∗ given by (12) for all t ∈ [0,∞). In addition, x∗( · )
is continuously differentiable with bounded derivative
over the domain [0,∞), that is, there exists a constant
θ > 0 such that ∥ẋ∗(t)∥ ≤ θ for all t ∈ [0,∞). •

The above assumption indicates that the desired ag-
gregative behavior of the agents satisfies a regularity
condition in the sense that it is smooth and belongs
to the admissible set X ∗. For all t ∈ [0,∞), since
x∗(t) ∈ X ∗, we obtain from (12) that there exists a

unique p∗(t) ∈ B such that

x∗(t) =
∑
i∈I

(
ci −Q−1

i p∗(t)
)
. (31)

Rearranging the terms, p∗(t) can be written explicitly as

p∗(t) =
(∑

i∈I
Q−1

i

)−1(
− x∗(t) +

∑
i∈I

ci
)
. (32)

Note from Assumption 5.1 that the signal t 7→ p∗(t) is
differentiable with a bounded derivative. If the system
regulator had accurate knowledge of all Qi and ci pa-
rameters, it could have obtained the desired behavior
by setting the price prediction equal to p∗(t). However,
since the cost functions of the agents are unknown to the
system designer, such a simple strategy cannot be imple-
mented. This asks for a more sophisticated design, and
to that end, we propose the following adaptive nudge
mechanism

˙̂p(t) =
∑
i∈I

xi(t)− x∗(t) +K(t)ẋ∗(t)

+
1

ε

(
projB

(
p̂(t)

)
− p̂(t)

)
,

(33a)

K̇(t) = τ
(∑

i∈I
xi(t)− x∗(t)

)
ẋ∗(t)

⊤

− τ σs
(
∥K(t)∥F

)
K(t),

(33b)

where B is given by (11), ∥K(t)∥F is the Frobenius norm
ofK(t), ε > 0, τ > 0, and the function σs : R≥0 → [0, σ]
is given by

σs(u) :=


0 if u < k0,

σ
(

u
k0

− 1
)

if k0 ≤ u ≤ 2k0,

σ if 2k0 < u .

(34)

In the above definition, σ > 0 and k0 > 0 are design
parameters that are selected afterwards.

Interpretation of the adaptive nudge mechanism: There
are several remarks in order concerning the adaptive
nudge (33): (i) This mechanism simplifies to the soft
nudge mechanism (21) in case of a stationary desired ag-
gregative behavior. Namely, with ẋ∗(t) = 0, the dynam-
ics (33a) reduces to (21) and (33b) can be discarded. (ii)
Compared to the soft nudge mechanism, the additional
term K(t)ẋ∗(t) is included to cope with the temporal
nature of the desired aggregative behavior by tracking
the signal ṗ∗(t) given by (cf. equation (32))

ṗ∗(t) = K∗ẋ∗(t), K∗ := −
(∑

i∈I
Q−1

i

)−1

. (35)

Again since the regulator is not aware of all cost func-
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tions, a static choice K(t) = K∗ would not be feasible
and we, therefore, appeal to the adaptive law (33b). (iii)
The first term on the right-hand side of (33b) is cho-
sen such that sign-indefinite terms in the time-derivative
of the Lyapunov function are canceled out. The second
term provides a state-dependent damping that prevents
the matrix K(t) to become unbounded.

Selection of design parameters: In order to guarantee
convergence of the adaptive nudge algorithm, the design
parameters ε, σ, and k0 should be chosen appropriately.
The treatment in Lemma B.1 in the appendix suggests
to choose ε ∈ Iε, σ ∈ Iσ, and k0 ∈ Ik0

with

Iε :=
(
0, θ−1(1 + λmax(

∑
i∈I

Q−1
i ))−1

]
,

Iσ :=
[
2θ(1 + λmax(

∑
i∈I

Q−1
i )),∞

)
,

Ik0
:=
[√

nλmax(
∑
i∈I

Q−1
i )/λ2min(

∑
i∈I

Q−1
i ),∞

)
.

(36)

Note that the design parameters can take any values
within the bounds indicated above, and therefore their
selection is oblivious of the exact values of the cost pa-
rameters.

The main result of this section is provided in the follow-
ing theorem.

Theorem 5.2. Consider the closed-loop system formed
by agents’ model (7) and the adaptive nudge mechanism
(33) with t 7→ x∗(t) satisfying Assumption 5.1. Let the
design parameters satisfy σ ∈ Iσ and k0 ∈ Ik0

with the
intervals Iσ and Ik0 given by (36). Then, there exists
some ε∗ ∈ Iε with Iε given by (36) such that for all ε ∈
(0, ε∗] and any initial condition (p̂(0),K(0), col(γi(0))) ∈
Rn×Rn×n×[0, 1]N , there exists a bounded Carathéodory
solution t 7→ (p̂(t),K(t), col(γi(t))) of the closed-loop
system over the domain [0,∞). Moreover, any solution
(p̂(t), col(γi(t))) converges to (p

∗(t),1N ) with p∗(t) given
by (32). Consequently,

∑
i∈I xi(t) converges to x

∗(t) as
desired.

Proof. Our proof builds on the results of Lemma B.1.
Let ε ∈ Iε, σ ∈ Iσ, and k0 ∈ Ik0

, then it follows
from Lemma B.1 that the closed-loop system admits
a bounded Carathéodory solution over domain [0,∞).
Consider any solution t 7→ (p̂(t),K(t), col(γi(t))). Again
from Lemma B.1, there is a finite time T ≥ 0 such that
for all t ≥ T , we have ∥p̂(t)∥ ≤ p̄ and ∥K(t)∥ F ≤ k̄ with
p̄ and k̄ given by (B.7). Next we prove convergence of
(p̂(t), col(γi(t))) to (p

∗(t),1N ) by considering three time
intervals [T, T1], [T1, T2], and [T2,∞). The first time in-
terval concerns the convergence analysis of p̂(t) to the
neighborhood of B. Full trust of the agents is achieved
in the second time interval, while convergence of p̂(t) to
p∗(t) is established in the last time interval.

We analyze the interval [T, T1] by considering the price
prediction dynamics (33a) as a system with bounded ex-
ogenous signals. In particular, we substitute the expres-
sion of xi given by (7b) and (8) into (33a) to get:

˙̂p = −
(1
ε
In +

∑
i∈I

γi(t)Q
−1
i

)(
p̂− projB(p̂)

)
+ ν(t),

where t 7→ γi(t) and t 7→ ν(t) are treated as exoge-

nous signals and ν(t) :=
∑

i∈I(ci + γi(t)Q
−1
i (λ̂i −

projB(p̂)))−
∑

i∈I Q
−1
i λ̂i−x∗(t)+K(t)ẋ∗(t). From the

proof of Lemma B.1, we see that the time instant T and
the ultimate bounds p̄ and k̄ are uniform for all ε ∈ Iε.
This, in addition to projB (p̂) ∈ B, γi(t) ∈ [0, 1], and
boundedness of x∗(t) and ẋ∗(t) (cf. Assumption 5.1),
imply that ν(t) is uniformly ultimately bounded. More
precisely, there exists some constant ν̄ > 0 such that
∥ν(t)∥ ≤ ν̄ for all t ≥ T and all ε ∈ Iε. Next we use this
property and show that suitable selection of ε provides
convergence of p̂(t) to the neighborhood of B in finite
time. Let

ε∗ := min
{ δ̃ − δ̄

2ν̄
, θ−1(1 + λmax(

∑
i∈I

Q−1
i ))−1

}
,

with δ̃ satisfying (26). This results in ε∗ ∈ Iε. Moreover,
following the steps of the proof of Theorem 4.4, there
exists some T1 ≥ T such that by choosing 0 < ε ≤ ε∗,
p̂(t) belongs the ball B̄(p0, δ̃) for all t ≥ T1. We note that
such selection of ε is possible since ν̄, and hence ε∗, are
independent of the choice of ε ∈ Iε.

Bearing in mind p̂(t) ∈ B̄(p0, δ̃) for all t ≥ T1, an analo-
gous argument to the proof of Theorem 4.4 can be used
to show that there exists a finite time T2 ≥ T1 such that
we have γi(t) = 1 for all i ∈ I and t ≥ T2. Next we ex-
ploit γi(t) = 1 to establish convergence of p̂ to p∗ in the
time interval [T2,∞). We perform a change of coordi-
nates to ease the notation, namely, (p̂,K) 7→ (p̃,Φ) with
p̃ = p̂− p∗ and Φ = K −K∗ where K∗ is given by (35).
In these coordinates, the closed-loop system, comprised
of (7) and (33), takes the form

˙̃p = −
∑
i∈I

Q−1
i p̃+Φ ẋ∗(t) +

1

ε
(projB (p̂)− p̂) ,

Φ̇ = −τ
∑
i∈I

Q−1
i p̃ ẋ∗(t)⊤ − τ σs

(
∥Φ+K∗∥F

)
(Φ +K∗)︸ ︷︷ ︸

σs(∥K∥F)K

,

(37)
where we have used γi(t) = 1 and the expressions of πi,
x∗(t), and ṗ∗(t), respectively given by (8), (31), and (35).
For the rest of the proof, we use the following definition
for notational simplicity.

Q :=
∑
i∈I

Q−1
i . (38)
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Consider the following Lyapunov candidate V (p̃,Φ) :=
1
2∥p̃∥

2+ 1
2τ Tr

(
Φ⊤Q−1Φ

)
. The evolution of V along the

solutions of (37) is given by

V̇ =− ∥p̃∥2Q + p̃⊤Φ ẋ∗(t) +
1

ε
p̃⊤ (projB (p̂)− p̂)

− Tr
(
ẋ∗(t) p̃⊤Φ

)
− σs

(
∥K∥F

)
Tr
(
K⊤Q−1Φ

)
.

It follows from p̃⊤Φ ẋ∗(t) = Tr
(
ẋ∗(t) p̃⊤Φ

)
and (30) that

V̇ ≤ −∥p̃∥2Q − σs
(
∥K∥F

)
Tr
(
K⊤Q−1Φ

)
. (39)

We proceed to show that, given k0 ∈ Ik0
, the second

term on the right-hand side is nonpositive. We note that
Φ = K +Q−1 due to (35) and (38). It then follows from
σs( · ) ≥ 0 that

− σs
(
∥K∥F

)
Tr
(
K⊤Q−1Φ

)
≤ −

σs
(
∥K∥F

)
λmax (Q)

∥K∥2F

+ σs
(
∥K∥F

)
∥K∥F∥Q−2∥F. (40)

In the previous inequality, we used Tr
(
K⊤Q−1K

)
≥

λmin

(
Q−1

)
∥K∥2F and λmin

(
Q−1

)
= 1/λmax (Q) to find

the first term on the right-hand side, and the second
term is obtained using Cauchy–Schwarz inequality as
|Tr(K⊤Q−2)| ≤ ∥K∥F∥Q−2∥F. In addition, notice that
we have ∥Q−2∥F ≤

√
n/λ2min(Q). It then follows from

the definition of Ik0 that ||Q−2∥F ≤ k0/λmax(Q) for all
k0 ∈ Ik0 . The latter implication implies that (40) can
be further bounded as

− σs
(
∥K∥F

)
Tr
(
K⊤Q−1Φ

)
≤ −

σs
(
∥K∥F

)
λmax (Q)

∥K∥F
(
∥K∥F − k0

)
.

Bearing in mind the definition of σs( · ) ≥ 0 given by
(34), we find that σs

(
∥K∥F

)
(∥K∥F − k0) ≥ 0 for allK ∈

Rn×n. Combining this with the above inequality results
in −σs

(
∥K∥F

)
Tr
(
K⊤Q−1Φ

)
≤ 0. Consequently, the

relation (39) provides

V̇ ≤ −∥p̃∥2Q . (41)

Next, recalling that the dynamics (37) is a nonau-
tonomous system, we use Barbalat’s lemma [26, Lem.
4.2] to conclude convergence of p̃(t) to the origin. Let

f(t) :=
∫ t

T2
∥p̃(s)∥2Qds for t ≥ T2. From (37), we see that

˙̃p(t) is bounded for all t ≥ T2. This implies that f̈(t) is

bounded too, and thus ḟ(t) is uniformly continuous. The
next step is to show that the function f(t) has a finite
limit as t→ ∞. For that, we integrate both sides of (41)

and use the definition of f(t) with V (t) ≥ 0 to obtain

lim
t→∞

f(t) ≤ V (T2).

The left-hand side of the inequality above is bounded
since V (T2) is bounded. It then follows from Barbalat’s

lemma that limt→∞ ḟ(t) = 0, i.e., p̃(t) → 0 as t → ∞.
We conclude that p̂(t) converges to p∗(t) in the time
interval [T2,∞), and in turn, the aggregative behavior∑

i∈I xi(t) converges to x
∗(t) as desired. ■

Remark 5.3. We note that one can also devise an adap-
tive nudge mechanism that is built on the hard nudge
(16) as follows:

˙̂p(t) = ΠB

(
p̂(t),

∑
i∈I

xi(t)− x∗(t) +K(t)ẋ∗(t)
)
,

K̇(t) = τ
(∑

i∈I
xi(t)− x∗(t)

)
ẋ∗(t)

⊤

− τ σs
(
∥K(t)∥F

)
K(t),

where ∥K(t)∥F is the Frobenius norm of K(t), τ > 0,
and the function σs : R≥0 → [0, σ] is defined in (34).
We can then show that for any t 7→ x∗(t) satisfying As-
sumption 5.1, choosing the design parameters σ > 0 and
k0 ∈ Ik0 with Ik0 given by (36), results in convergence
of the aggregative behavior to x∗(t). We note, however,
that the resulting convergence is restricted to the ball
B and is thus not global, unlike in the adaptive (soft)
nudge mechanism (33). The details of the analysis are
omitted due to lack of space. •

6 Case study

We illustrate the performance of our nudge mechanisms
by considering the problem of coordinated charging of
plug-in electric vehicles [19]. In this problem, the objec-
tive of the regulator is to control the aggregative power
demand over a charging horizon.

We consider a population of I = {1, . . . , 10} agents,
where each agent i aims at choosing its charging strat-
egy over the charging horizon of length n = 24, namely
zi ∈ Xi ⊂ Rn, such that its cost function given below is
minimized:

Ci(zi, p) := aiz
⊤
i zi + biz

⊤
i 1n + z⊤i p, (43)

where ai ∈ [0.004, 0.006] and bi ∈ [0.065, 0.085]. The set
Xi is nonempty, compact, and convex, and it is defined
as follows:

Xi :=
{
zi ∈ Rn | zi ∈ [0, x̄i]

n, 1⊤
n zi = di

}
,

where x̄i ∈ [8, 10](kW) is the maximum charging rate at
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any instant, and di ∈ [25, 35](kWh) is the total energy
required by the agent.

Since agents choose their actions from the sets Xi, rather
than Rn, the expression of the optimal action (4) modi-
fies to [4, Prop. 2.1.2 and 2.1.3(b)],

xi = projXi

(
− 1

2ai

(
bi1n + γip̂+ (1− γi)λ̂i

))
. (44)

Note that for Xi = Rn, the expression (44) reduces
to (4). As for the choice of ψi, we pick ψi(∥p − p̂∥) =
− tanh(hi(∥p− p̂∥ − δi)) with hi ∈ [2, 5], which satisfies
Assumption 3.1, and we select δi ∈ [0.3, 0.5]($/kWh),

ηi ∈ [3, 5], λ̂i ∈ [0.1, 0.5]n($/kWh), γi(0) ∈ [0, 0.7] to
simulate the model.

Taking Assumption 3.2 regarding the actual price signal
into consideration, we pick p0 = 0.31n($/kWh) and con-
sider price fluctuations to satisfy ∥∆p(t)∥ ≤ 0.1($/kWh)
for all t ≥ 0. Let ρ = 0.2, then ρ is less than or equal
to the expression on the right hand side of (10). Conse-
quently, the open ballB(p0, ρ) = {p̂ ∈ Rn | ∥p̂−p0∥ < ρ}
is a feasible set for the price prediction such that the
regulator can gain agents’ trust. We also define the ball
B by choosing δ̄ = 0.15. Therefore the condition (10) is
satisfied noting that δ̄ < ρ.

6.1 Stationary desired behavior

Here we demonstrate convergence of the aggregative be-
havior to a desired behavior x∗ shown in Fig. 3, under
both hard and soft nudge mechanisms. The desired ag-
gregative behavior specifies the goal of the system regu-
lator in nudging the vehicles to charge their batteries in
a specific interval.

We choose p̂(0) = p0 ∈ B for the hard nudge, whereas
we set ε = 10−3 and p̂(0) = p0 + 0.061n /∈ B for the
soft nudge to demonstrate convergence for an initializa-
tion outside the ball B. Fig. 4 shows the distance of the
mechanisms’ price predictions to p0 and the average of
the trust variables. We observe that for the hard nudge,
the price prediction belongs to the ball B for all times,
and as a result, the trust variables converge to one. The
latter is deduced from convergence of the average of the
trust variables to one and γi ∈ [0, 1]. For the soft nudge,
the price prediction converges to a positively invariant
set inside the open ball B(p0, ρ), which in turn increases
the agents’ trust on p̂. After gaining full trust of the
agents, the price predictions of both mechanisms con-
verge to p∗ ∈ B. Therefore, the aggregative behavior of
the agents, namely the aggregative power demand, con-
verges to x∗ as demonstrated in Fig. 5.

Fig. 3. Desired stationary aggregative power demand over
the charging horizon.

Fig. 4. Distance of hard and soft nudges’ price predictions
to p0 and the average of the trust variables.

Fig. 5. Aggregative power demands due to hard and soft
nudges and their distance to the desired stationary power
demand.

13



Fig. 6. Evolution of the desired temporal aggregative power

demand x∗(t) = 1+cos(3t)
2

m+ 1−cos(3t)
2

s.

6.2 Temporal desired behavior

Next, we consider the case where the desired aggrega-
tive behavior varies with time, and employ the adap-
tive nudge protocol to steer the aggregative behavior
towards such behavior. We choose the desired behavior
as x∗(t) = 1+cos(3t)

2 m + 1−cos(3t)
2 s with m and s shown

in Fig. 6. Recalling the structure of the cost function
Ci as (43), we observe that its minimization is equiva-
lent to minimization of Ji given by (2) with Qi = 2aiIn
and ci = − bi

2ai
1n. Therefore, the matrix K∗ in (35) and

thus the matrix K in (33) becomes a scalar matrix, i.e.,
K = kIn, and the adaptive nudge (33) reduces to

˙̂p =
∑
i∈I

xi − x∗(t) + k ẋ∗(t) +
1

ε

(
projB

(
p̂
)
− p̂
)
,

k̇ = τ
(∑

i∈I
xi − x∗(t)

)⊤
ẋ∗(t)− τ σs

(
|k|
)
k.

For the design parameters of the mechanism, we set
ε = 2× 10−5, σ = 105, and k0 = 10. Noting the bounds
of ai’s, i.e., 0.004 ≤ ai ≤ 0.006, the chosen parameters
belong to the intervals defined in (36). Fig. 7 presents
the simulation results for τ = 1, p̂(0) = p0+0.061n /∈ B,
and k(0) = 0. The results demonstrate that the price
prediction enters the ball B(p0, ρ) and the trust vari-
ables converge to one. Subsequently, the price prediction
converges to p∗(t), and as a consequence, the aggrega-
tive behavior converges to the desired one as depicted in
Fig. 8.

7 Conclusions

We have presented a nudge framework where a regulator
can steer the aggregative behavior of a set of price-taking
agents to a desired behavior by sending a suitable price

Fig. 7. Distance of adaptive nudge’s price prediction to p0,
the average of the trust variables, and evolution of the adap-
tive gain k.

Fig. 8. Aggregative power demands due to adaptive nudge
and its distance to the desired temporal power demand.

prediction signal. Due to the discrepancy between the
signal sent out by the regulator and the actual price, we
have incorporated trust dynamics in the agents’ model,
where the trust variables get updated based on the his-
tory of the accuracy of the price prediction signal. Nudge
mechanisms have been proposed to steer the aggregative
behavior of the agents to desired stationary as well as
temporal behaviors. Analytical convergence guarantees
have been provided for the proposed nudge mechanisms
and the results are demonstrated on a numerical case
study. Future works include investigating the applica-
tion of the proposed nudge framework in transportation
as well as power networks.
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Technical Appendices

A Existence of solutions for nonautonomous
projected dynamical systems

Lemma A.1. Consider a nonempty compact set X ⊂
Rn and a vector field h : Rn × [0,∞) → Rn that is
locally Lipschitz in the first argument and measurable
in the second. Then, for any initial condition x(0) ∈
X , there exists a Carathéodory solution t 7→ x(t) of the
nonautonomous projected dynamical system

ẋ = ΠX (x, h(x, t)) (A.1)

satisfying x(t) ∈ X for all t ∈ [0,∞).

Proof. The proof involves demonstrating the exis-
tence of Krasovskii solutions for (A.1) and then es-
tablishing the equivalence of the set of Krasovskii and
Carathéodory solutions. Since X is a compact set, we
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have the function (x, t) 7→ h(x, t) is Lipschitz on the
set X [16, Ex. 3.19] and measurable in t. Consequently,
by [13, Thm. 2], the system admits Krasovskii solutions.
Note that in the referred results, the map h is required
to be Lipschitz everywhere in the domain. However, the
implication holds even when h is Lipschitz only on the
set X , that is, the set where the solutions are restricted
to. The proof concludes by using [12, Thm. 6.3] which
shows that the set of Krasovskii and Carathéodory solu-
tions are equivalent for autonomous projected dynam-
ical system. The result extends to the nonautonomous
case using the same reasoning. ■

Lemma A.2. Consider a nonempty compact set Y ⊂
Rm and two vector fields h : Rn×Rm× [0,∞) → Rn and
g : Rn × Rm × [0,∞) → Rm that are locally Lipschitz
in the first two arguments and measurable in the third
one. Consider the nonautonomous projected dynamical
system

ẋ = h(x, y, t),

ẏ = ΠY (y, g(x, y, t)) .
(A.2)

Moreover, assume that there exist a continuously differ-
entiable function V : Rn → R satisfying:

(i) V (x) ≥ 0 for all x ∈ Rn,
(ii) V (x) → ∞ as ∥x∥ → ∞,
(iii) there exists a constant µ > 0 such that the following

holds for all y ∈ Y, t ∈ [0,∞), and ∥x∥ ≥ µ,

∇V (x)⊤h(x, y, t) ≤ 0.

Then, for any initial condition (x(0), y(0)) ∈ Rn × Y,
there exists a bounded Carathéodory solution t 7→
(x(t), y(t)) of the system (A.2) over the domain [0,∞).

Proof. Our proof proceeds in two steps. First, for each
initial condition, we design a nonautonomous projected
dynamical system that admits a solution starting from
the said initial point. Second, we show that this solution
is also a solution of (A.2).

Consider the continuous and increasing function α(s) :=
sup∥x∥≤s V (x) for s ≥ 0. Then, from condition (i) im-
posed on V , we have

0 ≤ V (x) ≤ α(∥x∥), ∀x ∈ Rn. (A.3)

Let (x0, y0) ∈ Rn × Y be any initial condition.
Define X0 := {x ∈ Rn | V (x) ≤ c} where c >
max{V (x0), α(µ)}. Then x0 ∈ int(X0) and the closed
ball B̄(0n, µ) is in the interior of X0 as a consequence of
(A.3). The former fact follows from V (x0) < c, and we
show the latter by contradiction. Assume that B̄(0n, µ)
is not in the interior of X0, then there exists some point
z0 ∈ B̄(0n, µ) such that V (z0) = c. Since α(·) is an
increasing function, it follows from z0 ∈ B̄(0n, µ) that
α(∥z0∥) ≤ α(µ). Bearing this and V (z0) = c > α(µ) in

mind, we have V (z0) > α(∥z0∥) which is in contradic-
tion to (A.3). Note that (ii) implies that X0 is compact.
Having defined this set, we now consider a compact set
X such that X0 ⊂ int(X ) and introduce the following
projected dynamical system

ẋ = ΠX (x, h(x, y, t)) ,

ẏ = ΠY (y, g(x, y, t)) .
(A.4)

From Lemma A.1, this system admits a bounded
Carathéodory solution t 7→ (x̂(t), ŷ(t)) over the domain
[0,∞) starting from the chosen initial condition (x0, y0).
That is, here (x̂(0), ŷ(0)) = (x0, y0). We next show that
this solution (x̂(·), ŷ(·)) is also a solution of the system
(A.2). Since (x0, y0) ∈ Rn × Y is chosen arbitrary, this
concludes the proof.

Noting that x0 ∈ int(X0), the solution x̂(·) is continuous,
and X0 is compact, there exists some finite time T > 0
such that x̂(t) ∈ X0 for all t ∈ [0, T ]. In this time interval,
the projection in the x-component of (A.4) is not active
since X0 ⊂ int(X ), that is, we have ΠX (x, h(x, y, t)) =
h(x, y, t). Bearing this in mind together with (iii) and
B̄(0n, µ) ⊂ int(X0), we deduce that x̂(t) ∈ X0 for all

t ∈ [0,∞) since V̇ (x) ≤ 0 on the boundary of X0. This
implies that the projection operator ΠX (x, ·) is inactive
for all times because x̂(t) is in the interior of X . Thus,
we conclude that t 7→ (x̂(t), ŷ(t)) is also a solution of the
system (A.2). ■

B Existence of solutions for adaptive nudge

Lemma B.1. Consider the closed-loop system formed
by agents’ model (7) and the adaptive nudge mecha-
nism (33) with t 7→ x∗(t) satisfying Assumption 5.1. Let
the design parameters satisfy σ ∈ Iσ, k0 ∈ Ik0

, and
ε ∈ Iε with the intervals Iσ, Ik0

, and Iε given by (36).
Then, for any initial condition (p̂(0),K(0), col(γi(0))) ∈
Rn×Rn×n×[0, 1]N , there exists a bounded Carathéodory
solution t 7→ (p̂(t),K(t), col(γi(t))) of the closed-loop
system over the domain [0,∞). Moreover, there exist
some constants p̄ > 0, k̄ > 0, and a finite time T ≥ 0
such that we have ∥p̂(t)∥ ≤ p̄ and ∥K(t)∥F ≤ k̄ for all
t ∈ [T,∞).

Proof. The proof is divided in two parts. The first part
focuses on establishing existence of Carathéodory solu-
tions and the second part shows their ultimate bound-
edness.

Existence of solutions: We use the expression of xi given
by (7b) and (8) to rewrite the adaptive nudgemechanism
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(33) as follows:

˙̂p = −
(1
ε
In +

∑
i∈I

γiQ
−1
i

)
d(p̂) +Kẋ∗(t) + ν(t),

K̇ = τ
(
−
∑
i∈I

γiQ
−1
i d(p̂) + ν(t)

)
ẋ∗⊤(t)− τσs

(
∥K∥F

)
K,

(B.1)
where d(p̂) := p̂ − projB(p̂) and ν(t) :=

∑
i∈I(ci +

γiQ
−1
i (λ̂i−projB(p̂)))−

∑
i∈I Q

−1
i λ̂i−x∗(t). Note that

the term ν(t) is bounded for all p̂ ∈ Rn, γi ∈ [0, 1], and
t ≥ 0. More precisely, using projB (p̂) ∈ B and bound-
edness of x∗(t), there exist some finite ν̄ > 0 such that
we have ∥ν(t)∥ ≤ ν̄ for all (p̂, col(γi)) ∈ Rn× [0, 1]N and
t ≥ 0.

Next, we rewrite the dynamics of the overall closed-loop
system in a suitable form to argue existence of solutions.
Let φ := vec(K) and ξ := col(p̂, φ), then the closed-loop
system, made of (7) and (B.1), becomes

ξ̇ = h(ξ, col(γi), t),

γ̇i = Π[0,1] (γi, ηiψi(∥p(t)− p̂∥)) , ∀i ∈ I,
(B.2)

where h defines the right-hand side of (B.1). Note that
the map t 7→ h(ξ, col(γi), t) is measurable as a conse-
quence of Assumption 5.1. Further, using the fact that σs
is Lipschitz and following arguments analogous to those
provided in the proof of Theorem 4.4, we deduce that
the map (ξ, col(γi), t) 7→ h(ξ, col(γi), t) is locally Lips-
chitz in (ξ, col(γi)). Also, the map (p̂, t) 7→ ψi(∥p(t)−p̂∥)
is locally Lipschitz in p̂ and measurable in t. Hence, the
existence of bounded solutions over the domain [0,∞)
follows from verifying that the hypotheses (i)-(iii) of
Lemma A.2 hold. The rest of the proof achieves this.

Consider the following Lyapunov candidate V (ξ) :=
1
2∥d(p̂)∥

2 + 1
2τ ∥φ∥

2. Analogous to the proof of Theorem

4.4, we deduce from Danskin’s Theorem that ∥d(p̂)∥2 is
differentiable and ∇∥d(p̂)∥2 = 2 d(p̂). Thus, the func-
tion V satisfies the hypotheses (i) and (ii) of Lemma
A.2. Our next step is to analyze the inner product of
∇V and the function h given by (B.2). Hence we define

H(ξ, col(γi), t) := ∇V (ξ)⊤h(ξ, col(γi), t).

In the following discussion, we show existence of some
µ > 0 such that

H(ξ, col(γi), t) ≤ 0, ∀∥ξ∥ ≥ µ, (B.3)

for all col(γi) ∈ [0, 1]N and t ≥ 0. This verifies that
Lemma A.2(iii) holds and establishes existence.

For simplicity of presentation, we compute H in the
coordinates of (p̂,K, col(γi)). Note that in this coor-
dinates, the Lyapunov candidate becomes V (p̂,K) =

1
2∥d(p̂)∥

2 + 1
2τ ∥K∥2F. This allows us to find the relation

of H as follows

H(p̂,K, col(γi), t) = Tr

([
˙̂p K̇

] [d(p̂)⊤
1
τK

⊤

])
,

where
[
˙̂p K̇

]
stands for the right-hand side of (B.1).

Expanding on the expression, we get

H = −∥d(p̂)∥2∑
i∈I

γiQ
−1
i

− 1

ε
∥d(p̂)∥2

+ d(p̂)⊤Kẋ∗(t) + d(p̂)⊤ν(t) +
1

τ
Tr
(
K̇K⊤

)
,

(B.4)

where

1

τ
Tr
(
K̇K⊤

)
=− d(p̂)⊤

∑
i∈I

γiQ
−1
i Kẋ∗(t)

+ ν(t)⊤Kẋ∗(t)− σs
(
∥K∥F

)
∥K∥2F.

In (B.4), we have dropped the arguments of H for sim-
plicity. Since γi ∈ [0, 1] and Qi ≻ 0 for all i ∈ I, the
first term on the right-hand side of (B.4) is nonpositive.
Hence, we have

H ≤− 1

ε
∥d(p̂)∥2 + d(p̂)⊤

(
In −

∑
i∈I

γiQ
−1
i

)
Kẋ∗(t)

+ d(p̂)⊤ν(t) + ν(t)⊤Kẋ∗(t)− σs
(
∥K∥F

)
∥K∥2F .

Further, one can show that ∥In −
∑

i∈I γiQ
−1
i ∥ ≤ 1 +

λmax(
∑

i∈I Q
−1
i ). This yields

d(p̂)⊤
(
In −

∑
i∈I

γiQ
−1
i

)
Kẋ∗(t)

≤ θ

2

(
1 + λmax(

∑
i∈I

Q−1
i )
) (

∥d(p̂)∥2 + ∥K∥2F
)
,

where we used ∥ẋ∗(t)∥ ≤ θ (cf. Assumption 5.1), ∥K∥ ≤
∥K∥F and Young’s inequality 2∥d(p̂)∥∥K∥F ≤ ∥d(p̂)∥2+
∥K∥2F. Consequently, using the above inequality and the
bounds on ν(t) and ẋ∗(t), we deduce that

H ≤− 1

ε
∥d(p̂)∥2 + θ

2

(
1 + λmax(

∑
i∈I

Q−1
i )
)

·
(
∥d(p̂)∥2 + ∥K∥2F

)
+ ν̄∥d(p̂)∥+ ν̄θ∥K∥F

− σs
(
∥K∥F

)
∥K∥2F.

(B.5)

We proceed the proof by showing that, by selecting the
design parameters carefully, there exists a compact set
such that the right-hand side of the foregoing equation
is negative outside of this set. Toward this end, we make
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use of the definition of σs( · ) and deduce that, for any
σ > 0 and k0 > 0, the last term on the right-hand side
of (B.5) satisfies −σs

(
∥K∥F

)
∥K∥2F ≤ −σ

2 ∥K∥2F + σ
2 k

2
0 .

This implies that

H ≤− 1

ε
∥d(p̂)∥2 − σ

2
∥K∥2F +

θ

2

(
1 + λmax(

∑
i∈I

Q−1
i )
)

·
(
∥d(p̂)∥2 + ∥K∥2F

)
+ ν̄∥d(p̂)∥+ ν̄θ∥K∥F +

σ

2
k20.

Let ε ∈ Iε and σ ∈ Iσ with Iε and Iσ given by (36).
Then we get

H ≤ − 1

2ε
∥d(p̂)∥2 − σ

4
∥K∥2F + ν̄∥d(p̂)∥+ ν̄θ∥K∥F +

σ

2
k20

= − 1

4ε
∥d(p̂)∥2 − σ

8
∥K∥2F − 1

4ε
(∥d(p̂)∥ − 2εν̄)2

− σ

8
(∥K∥F − 4

σ
ν̄θ)2 + c,

(B.6)
where c := 2

σ ν̄
2θ2 + εν̄2 + σ

2 k
2
0. Note that the third

and forth terms on the right-hand side of the equality
are nonpositive. Consequently, bearing the definition of
ξ in mind, we obtain (B.3) with µ = max{δ̄ + ∥p0∥ +

2
√
εc ,

√
8σ−1c}. Thus, existence of the solutions for all

t ≥ 0 is guaranteed.

Deriving ultimate bounds: Noting ε ∈ Iε and σ ∈ Iσ,
we deduce from (B.6) that the time-derivative of the

evolution of V along any solution of (B.1) satisfies V̇ ≤
−βV + b with

β =
θ(1 + λmax(

∑
i∈I Q

−1
i ))

2max{1, τ−1}
,

b =
2

σ
ν̄2θ2 + ν̄2θ−1(1 + λmax(

∑
i∈I

Q−1
i ))−1 +

σ

2
k20 .

This implies that V̇ ≤ −β
2V whenever V ≥ 2b

β . Thus,

along the solution, we have V (t) ≤ exp(−β
2 t)V (0) when-

ever V (t) ≥ 2b
β . It follows that for a solution starting

outside of the compact set Ω := {(p̂,K) ∈ Rn × Rn×n |
V (p̂,K) ≤ 2b

β }, it converges exponentially fast to Ω in

the time interval [0, T ] with T = 2
β ln(βV (0)

2b ), and re-

mains there afterwards. In addition, for a solution start-
ing in Ω, the inequality V (t) ≤ 2b

β is satisfied for all

t ≥ T = 0 since V̇ is negative on bd(Ω). We conclude
from this argument that (p̂(t),K(t)) belongs to the set
{(p̂,K) ∈ Rn×Rn×n | ∥p̂∥ ≤ p̄, ∥K∥F ≤ k̄} for all t ≥ T ,
where

p̄ := ∥p0∥+ δ̄ + 2
√
β−1b,

k̄ := 2
√
τβ−1b .

(B.7)

■
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